Characterization model of silicon dioxide melting based On image analysis

Author:

Zheng Ting1,Li Shangze1,Zhang Luyan1

Affiliation:

1. College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China

Abstract

The silicon dioxide is the hardest part to melt among the iron tailing components, the melting behavior of iron tailing can be represented by the melting behavior of silicon dioxide. Estimating the real-time melting rate of silicon dioxide in the time sequence provide guidance for the tailing addition and heat compensation in the process of slag cotton preparation, also indirectly improved the direct fiber forming technology of blast furnace slag. The position of silicon dioxide particles in the high-temperature molten pool during the melting process is changing constantly, using a strong weighted distance centroid algorithm to rack the centroid position of silicon dioxide particles during the melting process, and present the motion trail of centroid of silicon dioxide. In the paper, extracting indexes which represent the edge outline characteristics of silicon dioxide during the melting process of silicon dioxide using Snake active contour algorithm combined with Sobel operator, include shape, perimeter and area. Using the extracted skeleton characteristics, a three-dimensional skeleton generation model is created. From the skeleton data, estimating the volume of silicon dioxide and determine the parameter formula for the actual melting rate of silicon dioxide. The silicon dioxide melting rate at each moment is calculated by numerical simulation. The results of the Hough test circle and the silicon dioxide melting rate are verified. The rationality of the model is further determined.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference24 articles.

1. Hydraulic Tiles Produced with FineAggregates and Pigments Reclaimed from Iron Ore Tailings;Fontes;Journal of Sustainable Metallurgy,2021

2. Dissimilatory Iron-Reducing Microorganisms Are Presentand Active in the Sediments of the Doce River and TributariesImpacted by Iron Mine Tailings from the Collapsed Fundão Dam(Mariana, MG, Brazil);Keim;Minerals,2021

3. Iron tailings sand for theexperimental study of concrete fine aggregate;Zhang;NonmetallicMine,2016

4. Three relation of recycled concreteafter high temperature;Su;Journal of Building Materials,2015

5. Residual compressive strength of recycledconcrete after high temperature;Xiao;Building Materials Report,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3