CMSuG: Competitive mechanism-based superpixel generation method for image segmentation

Author:

Cui Qianna1,Pan Haiwei1,Li Xiaokun2,Zhang Kejia1,Chen Weipeng1

Affiliation:

1. School of Computer Science and Technology, Harbin Engineering University, Harbin, China

2. School of Computer Science and Technology, Heilongjiang University, Harbin, China

Abstract

During the last years, object-based image segmentation (OBIA) has seen a considerable increase in the image segmentation. OBIA is generally based on superpixel methods, in which the clustering-based method plays an increasingly important role. Most clustering methods for generating superpixels suffer from inaccurate classification points with inappropriate cluster centers. To solve the problem, we propose a competitive mechanism-based superpixel generation (CMSuG) method, which both accelerates convergence and promotes robustness for noise sensitivity. Then, image segmentation results will be obtained by a region adjacent graph (RAG)-based merging algorithm after constructing an RAG. However, high segmentation accuracy is customarily accompanied by expensive time-consuming costs. To improve computational efficiency, we address a parallel CMSuG algorithm, the time of which is much less than the CMSuG method. In addition, we present a parallel RAG method to decrease the expensive time-consuming cost in serial RAG construction. By leveraging parallel techniques, the running time of the whole image segmentation method decline with the time complexity from O (N) + O (K2) to O (N/K) or O (K2), in which N is the size of an input image and K is the given number of the superpixel. In the experiments, both nature image and remote sensing image segmentation results demonstrate that our CMSuG method outperforms the state-of-the-art superpixel generation methods, and then performs well for image segmentation in turn. Compared with the serial segmentation method, our parallel techniques gain more than four times acceleration in both remote sensing image dataset and nature image dataset.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference25 articles.

1. Segmentation for object-based image analysis (obia): A review of algorithms and challenges from remote sensing perspective;Hossain;ISPRS Journal of Photogrammetry and Remote Sensing,2019

2. Slic superpixels compared to state-of-the-art superpixel methods;Achanta;IEEE Transactions on Pattern Analysis Machine Intelligence,2012

3. Superpixel segmentation for polarimetric sar imagery using local iterative clustering;Fachao;IEEE Geoscience and Remote Sensing Letters,2015

4. Superpixel-based face sketch-photo synthesis;Peng;IEEE Transactions on Circuits Systems for Video Technology,2017

5. Image forgery detection using region – based rotation invariant co-occurrences among adjacent lbps;Isaac;Journal of Intelligent Fuzzy Systems,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3