An optimal video summarization of surveillance systems using LFOB-COA with deep features and RBLSTM

Author:

Davids D. Minola1,Christopher C. Seldev2

Affiliation:

1. Department of Electronics and Communication Engineering, C.S.I. Institute of Technology, Anna University, Chennai

2. Department of Computer Science and Engineering, St. Xavier’s Catholic College of Engineering, Anna University, Chennai

Abstract

The visual data attained from surveillance single-camera or multi-view camera networks is exponentially increasing every day. Identifying the important shots in the presented video which faithfully signify the original video is the major task in video summarization. For executing efficient video summarization of the surveillance systems, optimization algorithm like LFOB-COA is proposed in this paper. Data collection, pre-processing, deep feature extraction (FE), shot segmentation JSFCM, classification using Rectified Linear Unit activated BLSTM, and LFOB-COA are the proposed method’s five steps. Finally a post-processing step is utilized. For recognizing the proposed method’s effectiveness, the results are then contrasted with the existent methods.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3