Asso approach for classifying gene expression data based on optimal features

Author:

Susmi S. Jacophine1

Affiliation:

1. University College of Engineering Tindivanam

Abstract

Gene expression profiles are sequences of numbers, and the need to analyze them has now increased significantly. Gene expression data contain a large number of genes and models used for cancer classification. As the wealth of these data being produced, new prediction, classification and clustering techniques are applied to the analysis of the data. Although there are a number of proposed methods with good results, there is still limited diagnostics and a lot of problems still to be solved. To solve the difficulty, in this paper, an efficient gene expression data classification is proposed. To predict the cancer class of patients from the gene expression profile, this paper presents a novel classification framework in the manner of three steps namely, Pre-processing, feature selection and classification. In pre-processing, missing value is filled and redundant data are removed. To attain the enhanced classification outcomes, the important features are selected from the database with the help of Adaptive Salp Swarm Optimization (ASSO) algorithm. Then, the selected features are given to the multi kernel SVM (MKSVM) to classify the gene expression data namely, BRCA, KIRC, COAD, LUAD and PRAD. The performance of proposed methodology is analyzed in terms of different metrics namely, accuracy, sensitivity and specificity. The performance of proposed methodology is 4.5% better than existing method in terms of accuracy.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3