TDOPS: Time series based deduplication and optimal data placement strategy for IIoT in cloud environment

Author:

Muthunagai S.U.1,Anitha R.1

Affiliation:

1. Department of Computer Science and Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, India

Abstract

As a result of the advancements in Industry 4.0, the amount of data collected within industries are continuously expanding to achieve an innovative environment within the industry by maximizing asset usage. Meanwhile, the redundancy rate is increasing in cloud storage, which has an impact on data storage and analysis. To lower the rate of redundancy, the proposed system comprises a Time series-based deduplication technique. In the Time series-based deduplication technique, the Adaptive Multi-Pattern Boyer Moore Horspool (AM-BMH) algorithm, and Merkle tree were used to produce time-series data. Another significant challenge is that the geographically distributed cloud system has encountered that the data placement methodology with high-priced transportation costs for data transmission. To overcome this issue, an optimal data placement strategy using Modified Distribution is proposed. Thus the proposed Time Series-based Deduplication and Optimal Data Placement Strategy (TDOPS) is found to be effective when compared with the existing system. The various parameters like space reduction, efficient retrieval, data transportation costs, and data transmission time are taken into the account in the cloud environment for an evaluation. The proposed scheme saves 98 percent of storage space, 55 percent computation overhead, and improves 60% of cloud storage efficacy.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference27 articles.

1. IoT-Based Big Data Storage Systems in Cloud Computing: Perspectives and Challenges;Cai;IEEE Internet of Things Journal,2017

2. An Overview of IoT Sensor Data Processing, Fusion and Analysis Techniques;Krishnamurthi;Sensors, MDPI,2020

3. Adaptive Fog Configuration for the Industrial Internet of Things;Chen;IEEE Transactions on Industrial Informatics,2018

4. Decision-Making Model for Securing IoT Devices in Smart Industries;Rathee;IEEE Transactions on Industrial Informatics,2021

5. Fog-based energy-efficient routing protocol for wireless sensor networks;Borujeni;Journal of Supercomputing,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3