Why neural networks in the first place: a theoretical explanation

Author:

Contreras Jonatan1,Ceberio Martine1,Kosheleva Olga2,Kreinovich Vladik1

Affiliation:

1. Department of Computer Science, University of Texas at El Paso, TX, USA

2. Department of Teacher Education, University of Texas at El Paso, TX, USA

Abstract

Neural networks – specifically, deep neural networks – are, at present, the most effective machine learning techniques. There are reasonable explanations of why deep neural networks work better than traditional “shallow” ones, but the question remains: why neural networks in the first place? why not networks consisting of non-linear functions from some other family of functions? In this paper, we provide a possible theoretical answer to this question: namely, we show that of all families with the smallest possible number of parameters, families corresponding to neurons are indeed optimal – for all optimality criteria that satisfy some reasonable requirements: namely, for all optimality criteria which are final and invariant with respect to coordinate changes, changes of measuring units, and similar linear transformations.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference1 articles.

1. Goodfellow I. , Bengio Y. , Courville A. Deep Learning, MIT Press, Cambridge, Massachusetts, 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3