An extended artificial bee colony with local search for solving the Skyline-based web services composition under interval QoS properties

Author:

Khababa Ghizlane1,Seghir Fateh2,Bessou Sadik1

Affiliation:

1. Department of Computer Science, Faculty of Sciences, Sétif 1 University, Sétif, Algeria

2. Intelligent Systems Laboratory, Faculty of Technology, Sétif 1 University, Sétif, Algeria

Abstract

 In this paper, we introduce an extended version of artificial bee colony with a local search method (EABC) for solving the QoS uncertainty-aware web service composition (IQSC) problem, where the ambiguity of the QoS properties are represented using the interval-number model. At first, we formulate the addressed problem as an interval constrained single-objective optimization model. Then, we use the skyline operator to prune the redundant and dominated web services from their sets of functionally equivalent ones. Whereas, EABC is employed to solve the IQSC problem in a reduced search space more effectively and more efficiently. For the purpose of validation of the performance and the efficiency of the proposed approach, we present the experimental comparisons to an existing skyline-based PSO, an efficient discrete gbest-guided artificial bee colony and a recently provided Harris Hawks optimization with an elite evolutionary strategy algorithms on an interval extended version of the public QWS dataset.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference24 articles.

1. A hybrid approach for efficient web service composition with endto-end qos constraints;Alrifai;ACM Transactions on the Web (TWEB),2012

2. Adaptive service composition in flexible processes;Ardagna;IEEE Transactions on software engineering,2007

3. A study of interval metric and its application in multi-objective optimization with interval objectives;Bhunia;Computers & Industrial Engineering,2014

4. An efficient constraint handling method for genetic algorithms;Deb;Computer Methods in Applied Mechanics and Engineering,2000

5. Deb K. , Pratap A. , Agarwal S. and Meyarivan T. , A fast and elitist multiobjective genetic algorithm: Nsga-ii,182–197, IEEE transactions on evolutionary computation 6(2) (2002).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3