An effective multi-objective task scheduling and resource optimization in cloud environment using hybridized metaheuristic algorithm

Author:

Kalimuthu Raj Kumar1,Thomas Brindha1

Affiliation:

1. Department of Computer Science and Engineering, Noorul Islam Centre for Higher Education, TamilNadu, India

Abstract

In today’s world, cloud computing plays a significant role in the development of an effective computing paradigm that adds more benefits to the modern Internet of Things (IoT) frameworks. However, cloud resources are considered to be dynamic and the demands necessitated for resource allocation for a certain task are different. These diverse factors may cause load and power imbalance which also affect the resource utilization and task scheduling in the cloud-based IoT environment. Recently, a bio-inspired algorithm can work effectually to solve task scheduling problems in the cloud-based IoT system. Therefore, this work focuses on efficient task scheduling and resource allocation through a novel Hybrid Bio-Inspired algorithm with the hybridized of Improvised Particle Swarm Optimization and Ant Colony Optimization. The vital objective of hybridizing these two approaches is to determine the nearest multiple sources to attain discrete and continuous solutions. Here, the task has been allocated to the virtual machine through a particle swarm and continuous resource management can be carried out by an ant colony. The performance of the proposed approach has been evaluated using the CloudSim simulator. The simulation results manifest that the proposed Hybridized algorithm efficiently scheduling the task in the cloud-based IoT environment with a lesser average response time of 2.18 sec and average waiting time of 3.6 sec as compared with existing state-of-the-art algorithms.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3