Deep autoencoder based hybrid dimensionality reduction approach for classification of SERS for melanoma cancer diagnostics

Author:

Yousuff Mohamed1,Babu Rajasekhara1

Affiliation:

1. Vellore Institute of Technology: VIT University, INDIA

Abstract

Melanoma, a kind of fatal skin cancer, originates in melanin secreting cells of the dermis. Disease identification in the early stages assures a high survival rate for the patient. Most of the existing techniques retard the cancer detection phase. Surface-Enhanced Raman Spectroscopy (SERS) can capture fine details from the specimens that machine learning models can utilize to discriminate between healthy and diseased individuals rapidly. Our research work proposes a deep autoencoder based hybrid dimensionality reduction approach with a machine learning model on SERS spectrums of human skin fibroblast for melanoma cancer diagnostics. SERS measurements of 307 samples in total, belonging to two different classes, such as normal (157 samples) and malignant melanoma (150 samples), are used in this study. The SERS spectra measurements for both the samples lie between 100cm-1 and 4278cm-1. The variations in the intensity of Raman bands between both classes are intrinsically subtle. Neighborhood Component Analysis (NCA) technique has been exerted to transform 2090 dimensional spectral features into 2090 dimensional vectors and then the Deep Autoencoder (DAE) model is used to handle the nonlinearity in the data and produce the latent space, while Linear Discriminant Analysis (LDA) classifier have been employed for discriminating the normal and cancer cells. The k-fold cross-validation technique with a k value of 10 is implemented to assess the metrics of the model. The stated hybrid (NCA and DAE) model with 10-dimension latent space achieves an accuracy of 98%, the sensitivity of 99% and specificity of 97%, respectively. Due to the high-intensity nature of the SERS spectrum, the existing linear dimensionality reduction based discriminating model fails if the class label (Normal or Cancer) gets distributed on the low variance side. The proposed methodology captures both linear and nonlinear underlying structures present in the spectrums, resulting in better classification compared to the standard dimensionality reduction techniques.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3