A Deep-DrpXML and IAG-GWO based CHST fostered blockchain technology for secured dynamic optimal routing for wireless sensor networks

Author:

Anitha R.1,Bapu B.R. Tapas2

Affiliation:

1. Faculty of Computer Applications (MCA), S. A. Engineering College, Chennai, India

2. Faculty of Electronics and Communication Engineering, S. A. Engineering College, Chennai, India

Abstract

In wireless sensor network (WSN), routing is one of the substantial maneuvers for distributing data packets to the base station. But malevolent node outbreaks will happen during routing process, which exaggerate the wireless sensor network operations. Therefore, a secure routing protocol is required, which safeguards the routing fortification and the wireless sensor network effectiveness. The existing routing protocol is dynamically volatile during real time instances, and it is very hard to recognize the unsecured routing node performances. In this manuscript, a Deep Dropout extreme Machine learning optimized Improved Alpha-Guided Grey Wolf based Crypto Hash Signature Token fostered Blockchain Technology is proposed for secure dynamic optimal routing in Wireless Sensor Networks (SDOR-DEML-IAgGWO-CHS-BWSN). In this, Crypto Hash signature (CHS) token are generated for flow accesses with a secret key owned by each routing sensor node and it also offers an optimal path for data transmission. Then the secured dynamic optimal routing information is delivered through the proposed Blockchain based wireless sensor network platform with the help of Deep Dropout Extreme Machine learning optimized Improved Alpha-Guided Grey Wolf routing algorithm. Then the proposed method is simulated using the NS-2 (Network Simulator) tool. The simulation performance of the proposed SDOR-DEML-IAgGWO-CHS-BWSN method provide 76.26%, 65.57%, 60.85%, 48.99% and 42.9% lower delay during 30% malicious routing environment, 73.06%, 63.82%, 59.25%, 44.79% and 38.84% lower delay during 60% malicious routing environment is compared with the existing methods.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3