Affiliation:
1. Department of Otolaryngology – Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
Abstract
Processes of vestibular compensation mediate recovery of many aspects of vestibular dysfunction following unilateral vestibular injury. The VOR in response to high-frequency, high-acceleration head movements, however, retains an enduring asymmetry. Head movements that are inhibitory with respect to semicircular canals on the intact side lead to a diminished VOR whereas head movements that are excitatory for semicircular canals on the intact side lead to a VOR that returns close to normal. We review our work directed toward understanding the processes of VOR compensation to high-frequency, high-acceleration head movements and the related topic of adaptation to changes in the visual requirements for a compensatory VOR. Our work has shown that the processes of both compensation and adaptation to these stimuli can be described by a mathematical model with inputs from tonic and phasic components. We have further shown that the dynamics of regular afferents have close resemblance to the tonic pathway whereas the dynamics of irregular afferents match those of the phasic pathway.
Subject
Clinical Neurology,Sensory Systems,Otorhinolaryngology,General Neuroscience
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献