Fully-Recyclable Epoxy Fibres Reinforced Composites (FRCs) for Maritime Field: Chemical Recycling and Re-Use Routes

Author:

Saitta Lorena1,Pergolizzi Eugenio1,Tosto Claudio1,Sergi Claudia2,Cicala Gianluca13

Affiliation:

1. Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy

2. Department of Chemical Engineering Materials Environment, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy

3. INSTM-UDR CT, Viale A. Doria 6, 95125, Catania, Italy

Abstract

The maritime transport is guilty for about 2.5% of global greenhouse gases emission, since 940 million tonnes of CO2 are emitted around every year. Moreover, even though now the 96% of ships can be recycled, current recycling practices cause negative environmental impacts. Indeed, researches carried out on ‘ships graveyard’ showed a concentration of petroleum hydrocarbons 16,793% higher than at the control. Epoxy Fibres Reinforced Composites (FRCs) are sustainable candidates in this field. In fact, having the FRCs structures a light weight, fuel-efficient ships can be built. The global epoxy composites market size was valued at USD 25.32 billion in 2019 and is expected to expand at a compound annual growth rate (CAGR) of 6.2% from 2020 to 2027. In this sense, in the next few years, the market is expected to rapidly replace conventional materials with epoxy composites in several fields, including the marine one. However, concerns about their non-recyclability are rising more and more. In this study, by following a twofold “design for recycling” and “design from recycling” approach the chemical recycling process for thermoset polymer composites developed by Connora Technologies (California, USA) was considered as solution to overcome this issue. Moreover, the adoption of natural fibres, i.e. flax, and bio-based epoxy resin was used as environmentally-friendly solution to even avoid the use of petroleum based raw materials. To follow the first approach, i.e. “design for recycling”, Flax FRCs with bio-epoxy matrices were first produced via hand lay-up with vacuum bagging. Next, they were chemically treated to obtain a recycled thermoplastic (rTP). Then moving on the “design from recycling” approach, a reuse strategy was developed by exploiting the Electrospinning technique and producing electrospun fibers suitable for the interlaminar toughening of composite laminates.

Publisher

IOS Press

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3