A Digital Twin Approach to the Diagnostic Analysis of a Marine Diesel Engine

Author:

Altosole Marco1,Balsamo Flavio1,Acanfora Maria1,Mocerino Luigia1,Campora Ugo2,Perra Francesco3

Affiliation:

1. Dept. of Industrial Engineering, University of Naples “Federico II”, Italy

2. Dept. of Mechanical, Energy, Management, Transport Engineering (DIME), University of Genoa, Polytechnic School, Italy

3. Cetena S.p.A, Genova, Italy

Abstract

Marine diesel engines are systems integrated into a complex ship’s propulsion plant and comprehensive diagnostic analysis of possible degradations and failures is very challenging. Nowadays, current software and hardware allow exploring innovative ways, although each methodology cannot be considered apart from an adequate onboard monitoring system. In this work, the effects of several typical degradations of a ship’s engine, affecting some parameters that can be monitored on board, have been supposed and analyzed in order to their detection at an early stage by processing some parameters that can be monitored on board. The main aim is to provide a tool able to trace the engine performance decay. The procedure is based on the simulation of the engine model performed with input data measured on board and on a comparison of the outcomes with the real data. The case study is a 12.000 kW (750 rpm) 4-stroke marine diesel engine, simulated in a Matlab/Simulink environment and validated through the manufacturer’s datasheet. At this stage of the research, to make up for the lack of experimental data recorded onboard, a more detailed engine simulator is used to generate onboard data, with some alterations of the operating conditions as, intercooler efficiency and loss of pressure, turbocharger fouling, and many others. The numerical diagnostic tool acts on the minimization of the mean square errors (optimization problem) between the measured and the numerically simulated engine variables (such as pressures, temperatures, etc…) by properly varying the model parameters. The state of the engine is evaluated by analyzing the offset between the parameters of the degraded model and those obtained through the identification procedure for the degraded case.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hardware Modeling of Diesel Engine Fuel System Failure Modes and Coupled Shipboard Dynamics;2023 IEEE Electric Ship Technologies Symposium (ESTS);2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3