Digital twin model construction for intelligent Internet of Things logistics and warehousing systems

Author:

Cai Yuan

Abstract

Accompanied by a series of developments in information technology, such as the Internet of Things, big data, and digital twin technology, these innovations came into existence and began to gain significance. Targeting the issues of hierarchical confusion and inadequate visualization in traditional logistics and warehousing systems, this study begins by analyzing the framework structure of the warehousing system. It uses genetic algorithm calculation to obtain the solution set for optimizing cargo pull objectives. Finally, it proposes a novel intelligent IoT logistics and warehousing system by integrating digital twin technology. The experiment results indicated the genetic algorithm could optimize up to 60% of the cargo pull optimization objective function in this model with at least 300 iterations. The simulation and actual times of outgoing and incoming storage under this model varied between 0 to 1. The error throughout the range was a minimum of 0.1 seconds. The study found that the storage density achieved a maximum value of nearly 98%, while the minimum storage cost was approximately $3 per order and the maximum was $9 per order. Overall, the proposed model can aid enterprises in optimizing their operations by improving efficiency and reducing logistics and warehousing costs, ultimately promoting the digital and intelligent development of the logistics industry.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3