A survey on knowledge-aware news recommender systems

Author:

Iana Andreea1,Alam Mehwish23,Paulheim Heiko1

Affiliation:

1. Data and Web Science Group, University of Mannheim, Germany

2. Karlsruhe Institute of Technology, Institute AIFB, Germany

3. FIZ Karlsruhe – Leibniz Institute for Information Infrastructure, Germany

Abstract

News consumption has shifted over time from traditional media to online platforms, which use recommendation algorithms to help users navigate through the large incoming streams of daily news by suggesting relevant articles based on their preferences and reading behavior. In comparison to domains such as movies or e-commerce, where recommender systems have proved highly successful, the characteristics of the news domain (e.g., high frequency of articles appearing and becoming outdated, greater dynamics of user interest, less explicit relations between articles, and lack of explicit user feedback) pose additional challenges for the recommendation models. While some of these can be overcome by conventional recommendation techniques, injecting external knowledge into news recommender systems has been proposed in order to enhance recommendations by capturing information and patterns not contained in the text and metadata of articles, and hence, tackle shortcomings of traditional models. This survey provides a comprehensive review of knowledge-aware news recommender systems. We propose a taxonomy that divides the models into three categories: neural methods, non-neural entity-centric methods, and non-neural path-based methods. Moreover, the underlying recommendation algorithms, as well as their evaluations are analyzed. Lastly, open issues in the domain of knowledge-aware news recommendations are identified and potential research directions are proposed.

Publisher

IOS Press

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The RDF2vec family of knowledge graph embedding methods;Semantic Web;2024-05-14

2. Towards an Ontology for Technical Security Standards;2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA);2023-09-12

3. Personalized News Recommendation: Methods and Challenges;ACM Transactions on Information Systems;2023-01-10

4. Towards Analyzing the Bias of News Recommender Systems Using Sentiment and Stance Detection;Companion Proceedings of the Web Conference 2022;2022-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3