Hybrid optimization based deep stacked autoencoder for routing and intrusion detection

Author:

Boopathi Mythili1

Affiliation:

1. School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Katpadi, Vellore-632014, Tamil Nadu, India

Abstract

This research introduced the optimized Deep Stacked Autoencoder (DSA) for performing Intrusion Detection (ID) in the IoT. Firstly, IoT simulation is carried out and then, the information is routed by using the Chronological War Strategy Optimization (CWSO). Here, the CWSO is newly designed by incorporating the chronological concept with the WSO. After the routing, the ID is completed at the Base station (BS) by executing the following steps. Initially, data is obtained from a database, after that, feature normalization is done using min-max normalization. Meanwhile, Canberra distance is applied to execute the feature selection process. Finally, ID is performed using DSA, which is trained using the Competitive Swarm Henry War Strategy Optimization algorithm (CSHWO). The experimental result confirms that the invented scheme accomplished the superior outcome by the energy, f-score, precision, and recall values of 0.379, 0.913, 0.918 and 0.912, respectively.

Publisher

IOS Press

Reference28 articles.

1. Deep recurrent neural network for IoT intrusion detection system

2. D. Androutsos, K.N. Plataniotiss and A.N. Venetsanopoulos, Distance measures for color image retrieval, in: Proceedings of 1998 International Conference on Image Processing, ICIP98 (Cat. No. 98CB36269), Vol. 2, IEEE, 1998, pp. 770–774.

3. War strategy optimization algorithm: A new effective metaheuristic algorithm for global optimization;Ayyarao;IEEE Access,2022

4. M. Bakro, R. Ranjan Kumar, A.A. Alabrah, Z. Ashraf, S.K. Bisoy, N. Parveen, S. Khawatmi and A. Abdelsalam, Efficient intrusion detection system in the cloud using fusion feature selection approaches and an ensemble classifier, Electronics 12(11) (2023).

5. A competitive swarm optimizer for large scale optimization;Cheng;IEEE transactions on cybernetics,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3