Tetrabenazine Mitigates Aberrant Release and Clearance of Dopamine in the Nigrostriatal System, and Alleviates L-DOPA-Induced Dyskinesia in a Mouse Model of Parkinson’s Disease

Author:

Tseng Kuan-Yin12,Kuo Tung-Tai2,Wang Vicki3,Huang Eagle Yi-Kung4,Ma Kuo-Hsing5,Olson Lars6,Hoffer Barry J.7,Chen Yuan-Hao12ORCID

Affiliation:

1. National Defense Medical Center, Taipei, Taiwan, R.O.C

2. Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C

3. Ph.D. Program in Translational Medicine, National Defense Medical Center and Academia Sinica, Taipei, Taiwan

4. Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, R.O.C

5. Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, R.O.C

6. Department of Neuroscience, Karolinska Institute, Stockholm, Sweden

7. Department of Neurosurgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, USA

Abstract

Background: L-DOPA-induced dyskinesia (LID), occurring with aberrant processing of exogenous L-DOPA in the dopamine-denervated striatum, is a main complication of levodopa treatment in Parkinson’s disease. Objective: To characterize the effects of the vesicular antagonist tetrabenazine (TBZ) on L-DOPA-induced behavior, neurochemical signals, and underlying protein expressions in an animal model of Parkinson’s disease. Methods: 20-week-old MitoPark mice were co-treated or separately administered TBZ and L-DOPA for 14 days. Abnormal involuntary movements (AIMs) and locomotor activity were analyzed. To explore dopamine (DA) transmission, fast scan cyclic voltammetry was used to assess presynaptic DA dynamics in striatal slices following treatments. PET imaging with 4-[18F]-PE2I, ADAM and immunoblotting assays were used to detect receptor protein changes in the DA-denervated striatum. Finally, nigrostriatal tissues were collected for HPLC measures of DA, serotonin and their metabolites. Results: A single injection of TBZ given in the interval between the two L-DOPA/Carbidopa treatments significantly attenuated L-DOPA-induced AIMs expression and locomotor hyperactivity. TBZ was shown to reduce tonic and phasic release of DA following L-DOPA treatment in DA-denervated striatal tissue. In the DA-depleted striatum, TBZ decreased the expression of L-DOPA-enhanced D1 receptors and the serotonin reuptake transporter. Neurochemical analysis indicated that TBZ attenuated L-DOPA-induced surges of DA levels by promoting DA turnover in the nigrostriatal system. Conclusions: Our findings demonstrate that TBZ diminishes abnormal striatal DA transmission, which involves the ability of TBZ to modulate the presymptomatic dynamics of DA, and then mitigate aberrant release of exogenous L-DOPA from nerve terminals. The results support the potential of repositioning TBZ to counteract LID development.

Publisher

IOS Press

Subject

Cellular and Molecular Neuroscience,Neurology (clinical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3