Reifying dynamical algebra: Maximal ideals in countable rings, constructively

Author:

Blechschmidt Ingo1,Schuster Peter2

Affiliation:

1. Institut für Mathematik, Universität Augsburg, Germany

2. Dipartimento di Informatico, Università di Verona, Italy

Abstract

The existence of a maximal ideal in a general nontrivial commutative ring is tied together with the axiom of choice. Following Berardi, Valentini and thus Krivine but using the relative interpretation of negation (that is, as “implies  0 = 1”) we show, in constructive set theory with minimal logic, how for countable rings one can do without any kind of choice and without the usual decidability assumption that the ring is strongly discrete (membership in finitely generated ideals is decidable). By a functional recursive definition we obtain a maximal ideal in the sense that the quotient ring is a residue field (every noninvertible element is zero), and with strong discreteness even a geometric field (every element is either invertible or else zero). Krull’s lemma for the related notion of prime ideal follows by passing to rings of fractions. By employing a construction variant of set-theoretic forcing due to Joyal and Tierney, we expand our treatment to arbitrary rings and establish a connection with dynamical algebra: We recover the dynamical approach to maximal ideals as a parametrized version of the celebrated double negation translation. This connection allows us to give formal a priori criteria elucidating the scope of the dynamical method. Along the way we do a case study for proofs in algebra with minimal logic, and generalize the construction to arbitrary inconsistency predicates. A partial Agda formalization is available at an accompanying repository.11 See https://github.com/iblech/constructive-maximal-ideals/. This text is a revised and extended version of the conference paper (In Revolutions and Revelations in Computability. 18th Conference on Computability in Europe (2022) Springer). The conference paper only briefly sketched the connection with dynamical algebra; did not compare this connection with other flavors of set-theoretic forcing; and sticked to the case of commutative algebra only, passing on the generalization to inconsistency predicates and well-orders.

Publisher

IOS Press

Reference135 articles.

1. An Introduction to Inductive Definitions

2. The Russell–Prawitz modality;Aczel;Math. Structures Comput. Sci,2001

3. P. Aczel and M. Rathjen, Constructive Set Theory, 2010, book draft.

4. The operational monad tutorial;Apfelmus;The Monad. Reader,2010

5. Forcing in proof theory;Avigad;Bull. Symbolic Logic,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3