Iron loss analysis of magnetic bearing system considering magnetic-thermal coupling

Author:

Jin Chaowu1,Su Hao1,Dong Yue1,Zhou Jin1,Xu Yuanping1,Yan Xu1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, , China

Abstract

When the magnetic bearing rotor is working, the iron loss concentration phenomenon may occur on the rotor journal, which will cause the temperature gradient on the rotor journal and thermal unbalance. In order to study the iron loss concentration phenomenon, a multi-physics simulation method considering the magnetic-thermal coupling is proposed. Using ANSYS Maxwell for modeling and finite element analysis to obtain the causes of iron loss concentration in magnetic bearing and the influence of different parameters on the size and distribution of iron loss; using COMSOL for magnetic-thermal coupling in magnetic bearing to obtain the influence of iron loss concentration on temperature distribution. The simulation results show that: because of the initial disturbance, the control effect of the magnetic bearing makes the magnetic field distribution on the circumference of the rotor journal uneven, resulting in the phenomenon of iron loss concentration; control current and bias current have significant influence on iron loss distribution, while bias current and speed have a significant influence on iron loss value; iron loss concentration will result in a temperature gradient on the rotor surface. The magnetic-thermal coupling finite element analysis is verified by the temperature rise detection experiment. It provides a theoretical basis and reference for the loss and thermal unbalance of magnetic bearing.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3