Slick – An NLP based novel self-containing document smart storage services architecture

Author:

Jain Aryamaan1,Mahawar Priyanka1,Pantola Deepika1,Gupta Madhuri1,Singh Prabhishek1,Diwakar Manoj23

Affiliation:

1. School of Computer Science Engineering and Technology Bennett University, Greater Noida, India

2. Department of CSE, Graphic Era Deemd to be University, Dehradun, Uttrakhand, India

3. Graphic Era Hill University, Dehradun, Uttarakhand, India

Abstract

Recent research suggests that by 2023, the production of data will exceed 300 exabytes per month, a figure surpassing human verbal communication by over 60 times. This exponential growth underscores the need for platforms to adapt in areas such as data analysis and storage. Efficient data organization is crucial, considering the growing scarcity of time and space resources. While manual sorting may suffice for small datasets in smaller organizations, large corporations dealing with millions or billions of documents require advanced tools to streamline storage, sorting, and analysis processes. In response to this need, this research introduces a novel architecture called Slick, designed to enhance sorting, filtering, organization, and analysis capabilities for any storage service. The proposed architecture incorporates two innovative techniques – Degree of Importance (DOI) and amortized clustering – along with established natural language processing methods such as Topic Modelling, Summarization, and Tonal Analysis. Additionally, a new methodology for keyword extraction and document grouping is presented, resulting in significantly improved response times. It offers a searchable platform where users can utilize succinct keywords, lengthy text passages, or complete documents to access the information they seek. Experimental findings demonstrate a nearly 46 percent reduction in average response time compared to existing methods in literature.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3