Classification of Emotional States Using EEG Signals and Wavelet Packet Transform Features

Author:

Kumar Himanshu1,Ganapathy Nagarajan2,Puthankattil Subha D.3,Swaminathan Ramakrishnan1

Affiliation:

1. Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India

2. Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Germany

3. Department of Electrical Engineering, National Institute of Technology Calicut, Kozhikode, India

Abstract

In this work, an attempt has been made to classify arousal and valence states of emotion using time-domain features extracted from the Wavelet Packet Transform. For this, Electroencephalogram (EEG) signals from the publicly available DEAP database are considered. EEG signals are first decomposed using wavelet packet decomposition into θ, α, β, and γ bands. Then featural, namely band energy, sub-band energy ratio, root mean of energy, and information entropy of band energy is estimated. These features are fed into various machine learning classifiers such as support vector machines, linear discriminant analysis, K-nearest neighbor, and random forest. Results indicate that features extracted from wavelet packet transform can predict the arousal and valence emotional states. It is also seen that Support Vector Machines perform the best for both arousal (f-m = 75.68%) and valence(f-m=57.53%). This method can be used for the recognition of emotional states for various clinical purposes in emotion-related psychological disorders like major depressive disorder.

Publisher

IOS Press

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of Emotion Elicitation Using Multimodal Physiological Sensors and Phase Synchronization;IEEE Sensors Letters;2024-08

2. Adaptive Random Forest for Gait Prediction in Lower Limb Exoskeleton;Journal of Biomimetics, Biomaterials and Biomedical Engineering;2024-04-10

3. Channel Semantic Enhancement-Based Emotional Recognition Method Using SCLE-2D-CNN;International Journal on Semantic Web and Information Systems;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3