FEFR: Feature early fusion and reconstruction for online knowledge distillation

Author:

Liang Xingzhu12,Liu Wen1,Bi Feilong1,Yan Xinyun3,Zhang Chunjiong4

Affiliation:

1. School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan, China

2. Institute of Environment-Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China

3. Jinling Institute of Technology, Jiangsu AI Transportation Innovations & Applications Engineering Research Center, Nanjing, China

4. College of Electronics and Information Engineering, Tongji University, Shanghai, China

Abstract

Online knowledge distillation breaks the pre-determined strong and weak teacher-student models, it provides a new way of thinking about knowledge distillation. However, the current online methods often use the Logits-based prediction distribution, and the features containing rich semantic information are rarely used. Even if the feature-based methods are used, they only operate on the last layer of the network, without further exploring the representation knowledge of the middle layer feature map. To address the above issues, we propose an innovative feature early fusion and reconstruction (FEFR) method for online knowledge distillation which entails four essential components: multi-scale feature extraction and intermediate layer feature early fusion, reconstruction of features, dual-attention and overall fusion module in this paper. We propose early fusion by “sum” operation for feature matrices between different layers and advance fusion to improve the feature map representation. In order to enhance the communication ability between groups to obtain features, the features were reconstructed. We create a dual-attention to enhance the critical channel and spatial regions adaptively in order to collect more accurate information. The previously processed feature maps are combined and fused using feature fusion, which also aids in student models training. A study of the network architectures of CIFAR-10, CIFAR-100, CINIC-10 and ImageNet 2012 shows that FEFR provides more useful characterization knowledge for refinement and improves accuracy by about 0.5% compared to other methods.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3