Vehicle classification based on audio-visual feature fusion with low-quality images and noise

Author:

Zhao Yiming1,Zhao Hongdong1,Zhang Xuezhi1,Liu Weina1

Affiliation:

1. School of Electronic Information and Engineering, Hebei University of Technology, Tianjin, P.R. China

Abstract

In Intelligent Transport Systems (ITS), vision is the primary mode of perception. However, vehicle images captured by low-cost traffic cameras under challenging weather conditions often suffer from poor resolution and insufficient detail representation. On the other hand, vehicle noise provides complementary auditory features that offer advantages such as environmental adaptability and a large recognition distance. To address these limitations and enhance the accuracy of low-quality traffic surveillance classification and identification, an effective audio-visual feature fusion method is crucial. This paper presents a research study that establishes an Urban Road Vehicle Audio-visual (URVAV) dataset specifically designed for low-quality images and noise recorded in complex weather conditions. For low-quality vehicle image classification, the paper proposes a simple Convolutional Neural Network (CNN)-based model called Low-quality Vehicle Images Net (LVINet). Additionally, to further enhance classification accuracy, a spatial channel attention-based audio-visual feature fusion method is introduced. This method converts one-dimensional acoustic features into a two-dimensional audio Mel-spectrogram, allowing for the fusion of auditory and visual features. By leveraging the high correlation between these features, the representation of vehicle characteristics is effectively enhanced. Experimental results demonstrate that LVINet achieves a classification accuracy of 93.62% with reduced parameter count compared to existing CNN models. Furthermore, the proposed audio-visual feature fusion method improves classification accuracy by 7.02% and 4.33% when compared to using single audio or visual features alone, respectively.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3