A bilateral feature fusion network for defect detection on mobile cameras

Author:

Liu Cong1,She Wenhao1

Affiliation:

1. College of Mechanical Engineering, Yancheng Institute of Technology, Jiangsu, China

Abstract

Defect detection in mobile phone cameras constitutes a critical aspect of the manufacturing process. Nonetheless, this task remains challenging due to the complexities introduced by intricate backgrounds and low-contrast defects, such as minor scratches and subtle dust particles. To address these issues, a Bilateral Feature Fusion Network (BFFN) has been proposed. This network incorporates a bilateral feature fusion module, engineered to enrich feature representation by fusing feature maps from multiple scales. Such fusion allows the capture of both fine and coarse-grained details inherent in the images. Additionally, a Self-Attention Mechanism is deployed to garner more comprehensive contextual information, thereby enhancing feature discriminability. The proposed Bilateral Feature Fusion Network has been rigorously evaluated on a dataset of 12,018 mobile camera images. Our network surpasses existing state-of-the-art methods, such as U-Net and Deeplab V3+, particularly in mitigating false positive detection caused by complex backgrounds and false negative detection caused by slight defects. It achieves an F1-score of 97.59%, which is 1.16% better than Deeplab V3+ and 0.99% better than U-Net. This high level of accuracy is evidenced by an outstanding precision of 96.93% and recall of 98.26%. Furthermore, our approach realizes a detection speed of 63.8 frames per second (FPS), notably faster than Deeplab V3+ at 57.1 FPS and U-Net at 50.3 FPS. This enhanced computational efficiency makes our network particularly well-suited for real-time defect detection applications within the realm of mobile camera manufacturing.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference24 articles.

1. Supervised defect detection on textile fabrics via optimal Gabor filter;Jing;Journal of Industrial Textiles,2013

2. EMD-based pulsed TIG welding process porosity defect detectionand defect diagnosis using GA-SVM;Huang;Journal of Materials Processing Technology,2017

3. Recognition of wood surface defects with near infrared spectroscopy andmachine vision;Yu;Journal of Forestry Research,2019

4. Research on defect detection method for bottle mouth;Zhou;Journal of ElectronicMeasurement and Instrumentation,2016

5. Automatic Detection and Classification of Sewer Defects via HierarchicalDeep Learning;Xie;IEEE transactions on automation science and engineering: a publication of the IEEE Roboticsand Automation Society,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3