Indoor fire emergency evacuation path planning based on improved NavMesh algorithm

Author:

Cao Xianghong1,Wu Kunning1,Geng Xin1,Wang Yongdong1

Affiliation:

1. College of Building Environment Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China

Abstract

With the acceleration of urbanization, the frequency of building fire incidents has been increasing year by year. Therefore, rapid, efficient, and safe evacuation from buildings has become an urgent and important task. A construction fire escape path planning method based on an improved NavMesh algorithm is proposed in this paper. Firstly, by using the method of local updates in the navigation grid, redundant computation is reduced, and the update time of the improved algorithm is about 6.8% of that of the original algorithm, immediate generation of navigation is achieved. Secondly, the heuristic function of the pathfinding algorithm is improved, and a multi-exit path planning mechanism is proposed to achieve more efficient, which can quickly plan a safe evacuation path away from the spreading fire and smoke in the event of a fire. Finally, a new evaluation index called Navigation Grid Complexity (NGC) is proposed and demonstrated to measure the quality of navigation grids. The feasibility and effectiveness of the proposed method are validated through simulation experiments on actual building models, which can provide real-time, efficient, intelligent, and safe path planning for rapid evacuation of evacuees in the fire scene.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference27 articles.

1. A novel evacuation path planning method basedon improved genetic algorithm;Zhai;Journal of Intelligent & FuzzySystems,2022

2. Building-evacuation-route planning via time-expanded process-network synthesis;Garcia-Ojeda;Fire Safety Journal,2013

3. Design of distributed WSNs fire remote monitoringsystem based on fuzzy algorithm;Li;Journal of Intelligent &Fuzzy Systems,2021

4. Exit choice in an emergency evacuation scenario is influenced by exit familiarity and neighbor behavior;Kinateder;Safety Science,2018

5. Individual wayfinding decisions under stress in indoor emergency situations: A theoretical framework and meta-analysis;Lin;Safety Science,2023

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3