Exploiting drone images for forest fire detection using metaheuristics with deep learning model

Author:

Rajalakshmi S.1,Sellam V.2,Kannan N.3,Saranya S.4

Affiliation:

1. Department of Computer Science and Engineering, Dr. N.G.P. Institute of Technology, Coimbatore

2. Department of CSE, SRMIST, Ramapuram, Chennai, Tamil Nadu

3. Oxford Engineering College, Bangalore, Karnataka

4. Department of Computer Science andEngineering, K. Ramakrishnan College of Engineering, Trichy, TamilNadu

Abstract

Forest fires are a global natural calamity causing significant economic damage and loss of lives. Professionals forecast that forest fires would raise in the future because of climate change. Early prediction and identification of fire spread would enhance firefighting and reduce affected zones. Several systems have been advanced to detect fire. Recently, Unmanned Aerial Vehicles (UAVs) can be used for forest fire detection due to their ability, high flexibility, and inexpensive to cover vast areas. But still, they are limited by difficulties like image degradation, small fire size, and background complexity. This study develops an automated Forest Fire Detection using Metaheuristics with Deep Learning (FFDMDL-DI) model. The presented FFDMDL-DI technique exploits the DL concepts on drone images to identify the occurrence of fire. To accomplish this, the FFDMDL-DI technique makes use of the Capsule Network (CapNet) model for feature extraction purposes with a biogeography-based optimization (BBO) algorithm-based hyperparameter optimizer. For accurate forest fire detection, the FFDMDL-DI technique uses a unified deep neural network (DNN) model. Finally, the tree growth optimization (TGO) technique is utilized for the parameter adjustment of the DNN method. To depict the enhanced detection efficiency of the FFDMDL-DI approach, a series of simulations were performed on the FLAME dataset, comprising 6000 samples. The experimental results stated the improvements in the FFDMDL-DI method over other DL models with maximum accuracy of 99.76%.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3