Experimental and numerical study of disk specimen with rough structural plane under splitting test

Author:

Shan Renliang1,Nie Mingyue1,Zheng Peng1,Dong Ruiyu1,Bai Yao1,Ma Tiancheng1,Wang Yuxin1,Dou Haoyu1

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing, China

Abstract

To study the effects of the anisotropic matrix and structural planes on the splitting strength and failure mode of rocks, Brazilian splitting tests were carried out with seven different loading angles on specimens of rock-like materials with rough structural planes. The surface strains of the samples during the failure process were monitored and analysed with the help of a high-speed camera and digital image correlation (DIC) technology. The test results showed that the Brazilian splitting strength (BSS) decreased gradually with an increased loading angle. According to the crack morphology, the samples showed three failure modes, and the structural plane and the loading angle (θ) had an important effect on the failure mode. When θ < 75°, the sample failure was mainly affected by the matrix, and when θ > 75°, the sample failure was mainly controlled by the structural plane. The numerical simulation of the sample with a structural plane was carried out by the PFC2D particle flow program, the micro parameters were calibrated using a back propagation (BP) neural network model. The internal cracks of the sample under a splitting load were mainly matrix tensile microcracks and structural plane shear microcracks, and the tensile microcracks in the side with the weak matrix appeared significantly earlier than those in the side with the strong matrix. With increasing loading angle, the proportion of tensile microcracks in the matrix increased, while the proportion of shear microcracks in the matrix decreased, especially in the weak matrix. The microcracks at the structural plane mainly changed from tensile microcracks to shear microcracks, and the development degree of microcracks along the structural plane was more significant than that on the weak matrix with increasing loading angle. The results of the study can provide a reference for rock stability evaluation and utilization.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3