Explanation Ontology: A general-purpose, semantic representation for supporting user-centered explanations

Author:

Chari Shruthi1,Seneviratne Oshani1,Ghalwash Mohamed2,Shirai Sola1,Gruen Daniel M.1,Meyer Pablo2,Chakraborty Prithwish2,McGuinness Deborah L.1

Affiliation:

1. Computer Science, Rensselaer Polytechnic Institute, NY, US

2. Center for Computational Health, IBM Research, NY, US

Abstract

In the past decade, trustworthy Artificial Intelligence (AI) has emerged as a focus for the AI community to ensure better adoption of AI models, and explainable AI is a cornerstone in this area. Over the years, the focus has shifted from building transparent AI methods to making recommendations on how to make black-box or opaque machine learning models and their results more understandable by experts and non-expert users. In our previous work, to address the goal of supporting user-centered explanations that make model recommendations more explainable, we developed an Explanation Ontology (EO). The EO is a general-purpose representation that was designed to help system designers connect explanations to their underlying data and knowledge. This paper addresses the apparent need for improved interoperability to support a wider range of use cases. We expand the EO, mainly in the system attributes contributing to explanations, by introducing new classes and properties to support a broader range of state-of-the-art explainer models. We present the expanded ontology model, highlighting the classes and properties that are important to model a larger set of fifteen literature-backed explanation types that are supported within the expanded EO. We build on these explanation type descriptions to show how to utilize the EO model to represent explanations in five use cases spanning the domains of finance, food, and healthcare. We include competency questions that evaluate the EO’s capabilities to provide guidance for system designers on how to apply our ontology to their own use cases. This guidance includes allowing system designers to query the EO directly and providing them exemplar queries to explore content in the EO represented use cases. We have released this significantly expanded version of the Explanation Ontology at https://purl.org/heals/eo and updated our resource website, https://tetherless-world.github.io/explanation-ontology, with supporting documentation. Overall, through the EO model, we aim to help system designers be better informed about explanations and support these explanations that can be composed, given their systems’ outputs from various AI models, including a mix of machine learning, logical and explainer models, and different types of data and knowledge available to their systems.

Publisher

IOS Press

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Reference52 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comparative analysis of knowledge injection strategies for large language models in the scholarly domain;Engineering Applications of Artificial Intelligence;2024-07

2. Decentralized, Explainable, and Personalized Mental Health Monitoring;2024 IEEE 12th International Conference on Healthcare Informatics (ICHI);2024-06-03

3. The role of ontologies and knowledge in Explainable AI;Semantic Web;2024-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3