An HD-Zip transcription factor, VvHDZ4, in grapes (Vitis vinifera L.) confers enhanced drought tolerance in transgenic tomato

Author:

Li Guirong12,Quan Ran1,Cheng Shanshan1,Hou Xiaojin1,Hu Huiling1

Affiliation:

1. School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China

2. Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China

Abstract

BACKGROUND: HD-Zip genes encode several large and highly conserved protein families of transcription factors that play important roles in plant development and responses to environmental stress. To date, information about the involvement of HD-Zip in grape to drought response is limited. OBJECTIVE: The production of grapes is limited by a range of biotic and abiotic stresses, which cause significant losses in yield every year as well as a reduction in fruit quality. Identification and analysis of stress related genes in grapes are very important for cultivating more robust varieties with environmental stress resistance METHODS: We isolated a homeodomain-leucine zipper gene (HD-Zip), VvHDZ4, from grape, Vitis vinifera L. “Yatomi Rose”, and characterized VvHDZ4 based on analyses of its expression patterns, subcellular localization, transcription activity, and overexpression. RESULTS: We found that VvHDZ4 was highly expressed in roots and leaves, localized to nucleus, and activated the expression of reporter genes in yeast. The overexpression (OE) of VvHDZ4 led to enhanced drought stress tolerance in Solanum lycopersicum L. “Ailsa Craig” (tomato). The drought-tolerant phenotypes of the OE lines exhibited decreases in electrolyte leakage and rate of water loss, higher photosynthetic production and net photosynthesis rate, and showed up-regulation of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), all of which are key antioxidant enzymes known to be activated during drought stress. Moreover, we observed the up-regulation of four additional drought stress indicator genes, SIDREB2A, SIAREB, SIRD29 and SIERD10, in the OE lines. VvHDZ4 improved drought tolerance in tomato, and the modes of action possibly consist of reducing membrane damage, increasing photosynthetic productivity, and modulating the expression of stress defense genes. CONCLUSIONS: This work increases our understanding of the important roles HD-Zip transcription factors in the responses of plants to the environment, especially abiotic stress.

Publisher

IOS Press

Subject

Horticulture,Plant Science,Soil Science,Agronomy and Crop Science,Biochemistry,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cloning and expression analysis of SERK1 gene in Diospyros lotus;Open Life Sciences;2022-01-01

2. Development of Abiotic Stress Resistant Grapevine Varieties;Genomic Designing for Abiotic Stress Resistant Fruit Crops;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3