An approach for unsupervised contextual anomaly detection and characterization

Author:

Boukela Lynda1,Zhang Gongxuan1,Yacoub Meziane2,Bouzefrane Samia2,Baba Ahmadi Sajjad Bagheri1

Affiliation:

1. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China

2. CEDRIC lab, Conservatoire National des Arts et Métiers, Paris, France

Abstract

Outlier detection has been widely explored and applied to different real-world problems. However, outlier characterization that consists in finding and understanding the outlying aspects of the anomalous observations is still challenging. In this paper, we present a new approach to simultaneously detect subspace outliers and characterize them. We introduce the Dimension-wise Local Outlier Factor (DLOF) function to quantify the degree of outlierness of the data points in each feature dimension. The obtained DLOFs are used in an outlier ensemble so as to detect and rank the anomalous points. Subsequently, the same DLOFs are analyzed in order to characterize the detected outliers with their relevant subspace and their same-type anomalies. Experiments on various datasets show the efficacy of our method. Indeed, we demonstrate through an experimental evaluation that the proposed approach is competitive compared to the existing solutions in terms of both detection and characterization accuracy.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3