Identification of informational and probabilistic independence by adaptive thresholding

Author:

Li Kuo,Wang Aimin,Wang Limin,Fan Hangqi,Zhang Shuai

Abstract

The independence assumptions help Bayesian network classifier (BNC), e.g., Naive Bayes (NB), reduce structure complexity and perform surprisingly well in many real-world applications. Semi-naive Bayesian techniques seek to improve the classification performance by relaxing the attribute independence assumption. However, the study of dependence rather than independence has received more attention during the past decade and the validity of independence assumptions needs to be further explored. In this paper, a novel learning technique, called Adaptive Independence Thresholding (AIT), is proposed to automatically identify the informational independence and probabilistic independence. AIT can respectively tune the network topologies of BNC learned from training data and testing instance under the framework of target learning. Zero-one loss, bias, variance and conditional log likelihood are introduced to compare the classification performance in the experimental study. The extensive experimental results on a collection of 36 benchmark datasets from the UCI machine learning repository show that AIT is more effective than other learning techniques (such as structure extension, attribute weighting) and helps make the final BNCs achieve remarkable classification improvements.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3