Engineering user-centered explanations to query answers in ontology-driven socio-technical systems

Author:

Teze Juan Carlos L.1,Paredes Jose Nicolas2,Martinez Maria Vanina3,Simari Gerardo Ignacio2

Affiliation:

1. Facultad de Ciencias de la Administracion & Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Universidad Nacional de Entre Rios (UNER), Argentina

2. Departamento de Ciencias e Ingenieria de la Computacion, Universidad Nacional del Sur (UNS) & Instituto de Ciencias e Ingenieria de la Computacion (UNS–CONICET), Argentina

3. Departamento de Computacion, Universidad de Buenos Aires (UBA) & Instituto de Ciencias de la Computacion (ICC UBA–CONICET), Argentina

Abstract

The role of explanations in intelligent systems has in the last few years entered the spotlight as AI-based solutions appear in an ever-growing set of applications. Though data-driven (or machine learning) techniques are often used as examples of how opaque (also called black box) approaches can lead to problems such as bias and general lack of explainability and interpretability, in reality these features are difficult to tame in general, even for approaches that are based on tools typically considered to be more amenable, like knowledge-based formalisms. In this paper, we continue a line of research and development towards building tools that facilitate the implementation of explainable and interpretable hybrid intelligent socio-technical systems, focusing on features that users can leverage to build explanations to their queries. In particular, we present the implementation of a recently-proposed application framework (and make available its source code) for developing such systems, and explore user-centered mechanisms for building explanations based both on the kinds of explanations required (such as counterfactual, contextual, etc.) and the inputs used for building them (coming from various sources, such as the knowledge base and lower-level data-driven modules). In order to validate our approach, we develop two use cases, one as a running example for detecting hate speech in social platforms and the other as an extension that also contemplates cyberbullying scenarios.

Publisher

IOS Press

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3