WEU-Net: A Weight Excitation U-Net for Lung Nodule Segmentation

Author:

Banu Syeda Furruka1,Sarker Md. Mostafa Kamal2,Abdel-Nasser Mohamed1,Rashwan Hatem A.1,Puig Domenec1

Affiliation:

1. Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain

2. Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, BT9 7BL, United Kingdom

Abstract

Lung cancer is a dangerous non-communicable disease attacking both women and men and every year it causes thousands of deaths worldwide. Accurate lung nodule segmentation in computed tomography (CT) images can help detect lung cancer early. Since there are different locations and indistinguishable shapes of lung nodules in CT images, the accuracy of the existing automated lung nodule segmentation methods still needs further enhancements. In an attempt towards overcoming the above-mentioned challenges, this paper presents WEU-Net; an end-to-end encoder-decoder deep learning approach to accurately segment lung nodules in CT images. Specifically, we use a U-Net network as a baseline and propose a weight excitation (WE) mechanism to encourage the deep learning network to learn lung nodule-relevant contextual features during the training stage. WEU-Net was trained and validated on a publicly available CT images dataset called LIDC-IDRI. The experimental results demonstrated that WEU-Net achieved a Dice score of 82.83% and a Jaccard similarity coefficient of 70.55%.

Publisher

IOS Press

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3