Affiliation:
1. Information Technologies Institute, Centre for Research & Technology – Hellas, Greece
2. Information Systems Lab, University of Macedonia, Greece
3. Poznań Supercomputing and Networking Center - PSNC, Poland
4. Open Geospatial Consortium, Belgium
Abstract
At the domains of agriculture and livestock farming a large amount of data are produced through numerous heterogeneous sources including sensor data, weather/climate data, statistical and government data, drone/satellite imagery, video, and maps. This plethora of data can be used at precision agriculture and precision livestock farming in order to provide predictive insights in farming operations, drive real-time operational decisions, redesign business processes and support policy-making. The predictive power of the data can be further boosted if data from diverse sources are integrated and processed together, thus providing more unexplored insights. However, the exploitation and integration of data used in precision agriculture is not straightforward since they: i) cannot be easily discovered across the numerous heterogeneous sources and ii) use different structural and naming conventions hindering their interoperability. The aim of this paper is to: i) study the characteristics of data used in precision agriculture & livestock farming and ii) study the user requirements related to data modeling and processing from nine real cases at the agriculture, livestock farming and aquaculture domains and iii) propose a semantic meta-model that is based on W3C standards (DCAT, PROV-O and QB vocabulary) in order to enable the definition of metadata that facilitate the discovery, exploration, integration and accessing of data in the domain.
Subject
Computer Networks and Communications,Computer Science Applications,Information Systems