COV-ELM classifier: An extreme learning machine based identification of COVID-19 using chest X-ray images

Author:

Rajpal Sheetal1,Agarwal Manoj2,Rajpal Ankit1,Lakhyani Navin3,Saggar Arpita1,Kumar Naveen1

Affiliation:

1. Department of Computer Science, University of Delhi, Delhi, India

2. Department of Computer Science, Hansraj College, University of Delhi, Delhi, India

3. Department of Radiology, Saral Diagnostics, Pitam Pura, Delhi, India

Abstract

Coronaviruses constitute a family of viruses that gives rise to respiratory diseases. COVID-19 is an infectious disease caused by a newly discovered coronavirus also termed Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As COVID-19 is highly contagious, early diagnosis of COVID-19 is crucial for an effective treatment strategy. However, the reverse transcription-polymerase chain reaction (RT-PCR) test which is considered to be a gold standard in the diagnosis of COVID-19 suffers from a high false-negative rate. Therefore, the research community is exploring alternative diagnostic mechanisms. Chest X-ray (CXR) image analysis has emerged as a feasible and effective diagnostic technique towards this objective. In this work, we propose the COVID-19 classification problem as a three-class classification problem to distinguish between COVID-19, normal, and pneumonia classes. We propose a three-stage framework, named COV-ELM based on extreme learning machine (ELM). Our dataset comprises CXR images in a frontal view, namely Posteroanterior (PA) and Erect anteroposterior (AP). Stage one deals with preprocessing and transformation while stage two deals with feature extraction. These extracted features are passed as an input to the ELM at the third stage, resulting in the identification of COVID-19. The choice of ELM in this work has been motivated by its faster convergence, better generalization capability, and shorter training time in comparison to the conventional gradient-based learning algorithms. As bigger and diverse datasets become available, ELM can be quickly retrained as compared to its gradient-based competitor models. We use 10-fold cross-validation to evaluate the results of COV-ELM. The proposed model achieved a macro average F1-score of 0.95 and the overall sensitivity of 0.94 ± 0.02 at a 95% confidence interval. When compared to state-of-the-art machine learning algorithms, the COV-ELM is found to outperform its competitors in this three-class classification scenario. Further, LIME has been integrated with the proposed COV-ELM model to generate annotated CXR images. The annotations are based on the superpixels that have contributed to distinguish between the different classes. It was observed that the superpixels correspond to the regions of the human lungs that are clinically observed in COVID-19 and Pneumonia cases.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Reference31 articles.

1. Imaging profile of the COVID-19 infection: Radiologic findings and literature review;Ng;Radiology: Cardiothoracic Imaging,2020

2. Local binary patterns variants as texture descriptors for medical image analysis;Nanni;Artificial Intelligence in Medicine,2010

3. Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images;Wang;Scientific Reports,2020

4. Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images;Rajpal;Chaos, Solitons & Fractals,2021

5. A deep learning approach to detect Covid-19 coronavirus with X-Ray images;Jain;Biocybernetics and Biomedical Engineering,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3