A machine learning pipeline for extracting decision-support features from traffic scenes1

Author:

Fraga Vitor A.1,Schreiber Lincoln V.1,da Silva Marco Antonio C.2,Kunst Rafael1,Barbosa Jorge L.V.1,Ramos Gabriel de O.1

Affiliation:

1. Graduate Program in Applied Computing, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brazil

2. Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Abstract

Traffic systems play a key role in modern society. However, these systems are increasingly suffering from problems, such as congestions. A well-known way to efficiently reduce this kind of problem is to perform traffic light control intelligently through reinforcement learning (RL) algorithms. In this context, extracting relevant features from the traffic environment to support decision-making becomes a central concern. Examples of such features include vehicle counting on each queue, identification of vehicles’ origins and destinations, among others. Recently, the advent of deep learning has paved to way to efficient methods for extracting some of the aforementioned features. However, the problem of identifying vehicles and their origins and destinations within an intersection has not been fully addressed in the literature, even though such information has shown to play a role in RL-based traffic signal control. Building against this background, in this work we propose a deep learning pipeline for extracting relevant features from intersections based on traffic scenes. Our pipeline comprises three main steps: (i) a YOLO-based object detector fine-tuned using the UAVDT dataset, (ii) a tracking algorithm to keep track of vehicles along their trajectories, and (iii) an origin-destination identification algorithm. Using this pipeline, it is possible to identify vehicles as well as their origins and destinations within a given intersection. In order to assess our pipeline, we evaluated each of its modules separately as well as the pipeline as a whole. The object detector model obtained 98.2% recall and 79.5% precision, on average. The tracking algorithm obtained a MOTA of 72.6% and a MOTP of 74.4%. Finally, the complete pipeline obtained an average error rate of 3.065% in terms of origin and destination counts.

Publisher

IOS Press

Subject

Artificial Intelligence

Reference34 articles.

1. Autonomous road surveillance system: A proposed model for vehicle detection and traffic signal control;Ali;Procedia Computer Science,2013

2. Detection and classification of vehicles for traffic video analytics;Arinaldi;Procedia Computer Science,2018

3. The economics of traffic congestion;Arnott;American scientist,1994

4. Introduction to intelligent systems in traffic and transportation;Bazzan;Synthesis Lectures on Artificial Intelligence and Machine Learning,2013

5. Simple online and realtime tracking

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3