Multi-agent reinforcement learning for safe lane changes by connected and autonomous vehicles: A survey

Author:

Hegde Bharathkumar1,Bouroche Mélanie1

Affiliation:

1. School of Computer Science and Statistic, Trinity College Dublin, Ireland

Abstract

Connected Autonomous vehicles (CAVs) are expected to improve the safety and efficiency of traffic by automating driving tasks. Amongst those, lane changing is particularly challenging, as it requires the vehicle to be aware of its highly-dynamic surrounding environment, make decisions, and enact them within very short time windows. As CAVs need to optimise their actions based on a large set of data collected from the environment, Reinforcement Learning (RL) has been widely used to develop CAV motion controllers. These controllers learn to make efficient and safe lane changing decisions using on-board sensors and inter-vehicle communication. This paper, first presents four overlapping fields that are key to the future of safe self-driving cars: CAVs, motion control, RL, and safe control. It then defines the requirements for a safe CAV controller. These are used firstly to compare applications of Multi-Agent Reinforcement Learning (MARL) to CAV lane change controllers. The requirements are then used to evaluate state-of-the-art safety methods used for RL-based motion controllers. The final section summarises research gaps and possible opportunities for the future development of safe MARL-based CAV motion controllers. In particular, it highlights the requirement to design MARL controllers with continuous control for lane changing. Moreover, as RL algorithms by themselves do not guarantee the level of safety required for such safety-critical applications, it offers insights and challenges to integrate safe RL methods with MARL-based CAV motion controllers.

Publisher

IOS Press

Subject

Artificial Intelligence

Reference60 articles.

1. A Survey of Autonomous Vehicles: Enabling Communication Technologies and Challenges

2. Constrained Markov Decision Processes

3. M.G. Bellemare, W. Dabney and R. Munos, A distributional perspective on reinforcement learning, in: Proceedings of the 34th International Conference on Machine Learning, PMLR, 2017, pp. 449–458, ISSN: 2640–3498, https://proceedings.mlr.press/v70/bellemare17a.html.

4. Safe learning in robotics: From learning-based control to safe reinforcement learning;Brunke;Annual Review of Control, Robotics, and Autonomous Systems,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3