Self Learning of News Category Using AI Techniques

Author:

Hayat Zara1,Rahim Aqsa1,Bashir Sajid2,Naeem Muddasar3

Affiliation:

1. National University of Science and Technology

2. National University of Technology

3. ICAR-CNR

Abstract

Numerous e-news channels publish the daily happenings in the world from different sources. These huge amounts of news articles have lamentably conceived the information overload issue among the users. Hence text mining, which aims in extracting previously unknown information from unstructured text, has been widely used by several researchers to segregate full news articles however, the news headlines categorization is still specifically limited. Therefore, considering this limitation, the current research aims to propose a framework that will self-learn and automatically classify any given news headline into its corresponding news category using artificial intelligence methods i.e. text mining and machine learning algorithms. The proposed framework consists of three stages: Exploratory Data Analysis, Text Pre-processing, and Text Classification. For exploratory data analysis, the top 10 most frequent balanced news categories are chosen so that further processing of data can be done on a more balanced version of the dataset. After exploring the data, text pre-processing techniques are applied to make the data transformed, normalized, and structured. Finally, text classification is carried out with two approaches: unsupervised classification using Mean Shift and K-means algorithms and supervised classification using Logistic Regression with Bag of Words and TF-IDF algorithm. To depict the working of the proposed framework, a case study is presented on a news headlines dataset which accurately performed news headlines classification.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3