Gut Microbiota Alterations and Cognitive Impairment Are Sexually Dissociated in a Transgenic Mice Model of Alzheimer’s Disease

Author:

Cuervo-Zanatta Daniel12,Garcia-Mena Jaime2,Perez-Cruz Claudia1

Affiliation:

1. Pharmacology Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Laboratory of Neuroplasticity and Neurodegeneration, Mexico City, Mexico

2. Genetics and Molecular Biology Department, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Laboratory of reference and support for the characterization of genomes, transcriptomes and microbiomes, Mexico City, Mexico

Abstract

Background: Normal aging is accompanied by cognitive deficiencies, affecting women and men equally. Aging is the main risk factor for Alzheimer’s disease (AD), with women having a higher risk. The higher prevalence of AD in women is associated with the abrupt hormonal decline seen after menopause. However, other factors may be involved in this sex-related cognitive decline. Alterations in gut microbiota (GM) and its bioproducts have been reported in AD subjects and transgenic (Tg) mice, having a direct impact on brain amyloid-β pathology in male (M), but not in female (F) mice. Objective: The aim of this work was to determine GM composition and cognitive dysfunction in M and F wildtype (WT) and Tg mice, in a sex/genotype segregation design. Methods: Anxiety, short term working-memory, spatial learning, and long-term spatial memory were evaluated in 6-month-old WT and Tg male mice. Fecal short chain fatty acids were determined by chromatography, and DNA sequencing and bioinformatic analyses were used to determine GM differences. Results: We observed sex-dependent differences in cognitive skills in WT mice, favoring F mice. However, the cognitive advantage of females was lost in Tg mice. GM composition showed few sex-related differences in WT mice. Contrary, Tg-M mice presented a more severe dysbiosis than Tg-F mice. A decreased abundance of Ruminococcaceae was associated with cognitive deficits in Tg-F mice, while butyrate levels were positively associated with better working- and object recognition-memory in WT-F mice. Conclusion: This report describes a sex-dependent association between GM alterations and cognitive impairment in a mice model of AD.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

Reference125 articles.

1. Alzheimer’s disease facts and figures;Alzheimer Association;Alzheimers Dement,2020

2. Dementia prevention, intervention, and care;Livingston;Lancet,2017

3. Female sex and Alzheimer’s risk: The menopause connection;Scheyer;J Prev Alzheimers Dis,2018

4. Alzheimer’s disease facts and figures;Alzheimer Association;Alzheimers Assoc,2019

5. Reproductive period and risk of dementia in a diverse cohort of health care members;Gilsanz;Neurology,2019

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3