Author:
Kang Yan,Song Jinling,Li Keqiang,Zhai Xiao’ang,Li Yuanfu
Abstract
Using artificial neural network (ANN) to solve the problem of time series water quality prediction has become increasingly mature. In this paper, through the study of leaky-integral echo state neural network (Leaky ESN), combined with the historical water quality data of Dongzhen Reservoir in Fujian Province, a single-day water quality prediction model was constructed, and the Bayesian optimization algorithm was used to realize the automatic optimization of hyper-parameters in the network. On this basis, multi-day prediction models were constructed by further improving the network, which used the historical water quality data of the previous 7 days to predict the water quality of the next 3 days, 5 days and 7 days. Then the prediction models were applied to the water quality prediction of the study. The experimental results show that the single-day prediction model with Bayesian optimization has high accuracy. The multi-day prediction models can also achieve good prediction effect, and have more practical application value. They are more suitable for early warning of water quality.
Subject
Computational Mathematics,Computer Science Applications,General Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Water Quality Prediction Based on SSA-MIC-SMBO-ESN;Computational Intelligence and Neuroscience;2022-08-03