Decision tree-based prediction approach for improving stable energy management in smart grids

Author:

Chen Sichao1,Huang Liejiang1,Pan Yuanjun1,Hu Yuanchao2,Shen Dilong1,Dai Jiangang1

Affiliation:

1. Hangzhou Xinmei Complete Electric Appliance Manufacturing Co., Ltd, Hangzhou, China

2. Shandong University of Technology, Zibo, China

Abstract

Today, the Internet of Things (IoT) has an important role for deploying power and energy management in the smart grids as emerging trend for managing power stability and consumption. In the IoT, smart grids has important role for managing power communication systems with safe data transformation using artificial intelligent approaches such as Machine Learning (ML), evolutionary computation and meta-heuristic algorithms. One of important issues to manage renewable energy consumption is intelligent aggregation of information based on smart metering and detecting the user behaviors for power and electricity consumption in the IoT. To achieve optimal performance for detecting this information, a context-aware prediction system is needed that can apply a resource management effectively for the renewable energy consumption for smart grids in the IoT. Also, prediction results from machine learning methods can be useful to manage optimal solutions for power generation activities, power transformation, smart metering at home and load balancing in smart grid networks. This paper aims to design a new periodical detecting, managing, allocating and analyzing useful information regarding potential renewable power and energy consumptions using a context-aware prediction approach and optimization-based machine learning method to overcome the problem. In the proposed architecture, a decision tree algorithm is provided to predict the grouped information based on important and high-ranked existing features. For evaluating the proposed architecture, some other well-known machine learning methods are compared to the evaluation results. Consequently, after analyzing various components by solving different smart grids datasets, the proposed architecture’s capacity and supremacy are well determined among its traditional approaches.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3