Fine-grained load balancing with proactive prediction and adaptive rerouting in data center

Author:

Gao Weimin12,Zhong Jiaming3,Peng Caihong2,Li Xinlong2,Liao Xiangbai2

Affiliation:

1. School of Computer Science and Engineering, Central South University, ChangSha, 410083, China

2. Department of Computer Science and Engineering, Hunan Institute of Technology, HengYang, 421002, China

3. College of Economic and Management, Xiangnan University, Chenzhou, 423001, China

Abstract

Though the existing load balancing designs successfully make full use of available parallel paths and attain high bisection network bandwidth, they reroute flows regardless of their dissimilar performance requirements. But traffic in modern data center networks exhibits short bursts characteristic, which can easily lead to network congestion. The short flows suffer from the problems of large queuing delay and packet reordering, while the long flows fail to obtain high throughput due to low link utilization and packet reordering. In order to solve these inefficiency, we designed a fine-grained load balancing method (FLB), which uses an active monitoring mechanism to split traffic, and flexibly transfers flowlet to non-congested path, effectively reducing the negative impact of burst flow on network performance. Besides, to avoid packet reordering, FLB leverages the probe packets to estimate the end-to-end delay, thus excluding paths that potentially cause packet reordering. The test results of NS2 simulation show that FLB significantly reduces the average and tail flow completion time of flows by up to 59% and 56% compared to the state-of-the-art multi-path transmission scheme with less computational overhead, as well as increases the throughput of long flow.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3