Inertia control method of direct drive permanent magnet wind turbine under high wind power permeability

Author:

Wang Fang

Abstract

Direct-drive permanent magnet wind turbine has high power generation efficiency, especially in low wind speed environment, and is widely used for wind power generation. Direct-driven permanent magnet wind turbines show no inertia response to the system through the grid connection of full-power converters, resulting in increased frequency fluctuation, poor response effect and reduced stability time of the system under sudden load and sudden wind speed conditions. Based on this, an inertia control method of direct-drive permanent magnet wind turbine under high wind power penetration is proposed, and the model of direct-drive permanent magnet wind turbine is built by designing functional modules to improve the synchronous control effect under high wind power penetration. The vector control calculation method is used to design the virtual inertia control parameters, and the decoupling quantity is introduced to decouple the parameters with filter inductance, so as to improve the supporting capacity of power grid frequency fluctuation. The simulation results show that the proposed method has a fast frequency response under sudden load change, and it drops to the lowest value of 49.16 Hz at 12.14 s. Under the condition of sudden change of wind speed, the system frequency rises to the highest value of 50.38 Hz at 12.94 s. It is proved that the proposed method has a certain suppression effect on the amplitude of frequency change, effectively shortens the time for the system frequency to return to steady state, and thus has more advantages.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

Reference25 articles.

1. Comparative study of wind turbine power curve modeling method;Liang;Comput Simul.,2021

2. A spectral model of grid frequency for assessing the impact of inertia response on wind turbine dynamics;Guo;Energies.,2021

3. Implementation of variable blade inertia in OpenFAST to integrate a flywheel system in the rotor of a wind turbine;Alhrshy;Energ.,2021

4. Electromechanical interactions of full scale converter wind turbine with power oscillation damping and inertia control;Edrah;Int J Electr Power Energy Syst.,2022

5. New perspectives on maximum wind energy extraction of variable-speed wind turbines using previewed wind speeds;Song;Energy Convers Manage.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3