Elongation of the proximal descending thoracic aorta and associated hemodynamics increase the risk of acute type B aortic dissection

Author:

Zhang Xuelan12,Peng Yuan3,Li Gaoyang4,Li Jiehua3,Luo Mingyao5,Che Yue1,Zheng Liancun1,Anzai Hitomi4,Ohta Makoto4,Shu Chang35

Affiliation:

1. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China

2. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China

3. Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China

4. Institute of Fluid Science, Tohoku University, Sendai, Japan

5. Department of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China

Abstract

BACKGROUND: Acute type B aortic dissection (ATBAD) is a life-threatening aortic disease. However, little information is available on predicting and understanding of ATBAD. OBJECTIVE: The study sought to explore the underlying mechanism of ATBAD by analyzing the morphological and hemodynamic characteristics related to aortic length. METHODS: The length and tortuosity of the segment and the whole aorta in the ATBAD group (n= 163) and control group (n= 120) were measured. A fixed anatomic landmark from the distal of left subclavian artery (LSA) to the superior border of sixth thoracic vertebra was proposed as the proximal descending thoracic aorta (PDTA), and the dimensionless parameter, length ratio, was introduced to eliminate the individual differences. The significant morphological parameters were filtrated and the associations between parameters were investigated using statistical approaches. Furthermore, how aortic morphology influenced ATBAD was explored based on idealized aortic models and hemodynamic-related metrics. RESULTS: The PDTA length was significantly increased in the ATBAD group compared with the control group and had a strong positive correlation with the whole aortic length (r= 0.89). The length ratio (LR2) and tortuosity (T2) of PDTA in the ATBAD group were significantly increased (0.15 ± 0.02 vs 0.12 ± 0.02 and 1.73 ± 0.48 vs 1.50 ± 0.36; P< 0.001), and LR2 was positive correlation with T2 (r= 0.73). In receiver-operating curve analysis, the area under the curve was 0.835 for LR2 and 0.641 for T2. Low and oscillatory shear (LOS) was positive correlation with LR2, and the elevated LOS occurred in the distal of LSA. CONCLUSION: Elongation of PDTA is associated with ATBAD, and the length ratio is a novel predictor. Elongated PDTA induced more aggressive hemodynamic forces, and high LOS regions may correspond to the entry tear location. The synergy of the morphological variation and aggressive hemodynamics creates contributory conditions for ATBAD.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3