An improved attention module based on nnU-Net for segmenting primary central nervous system lymphoma (PCNSL) in MRI images1

Author:

Zhao Chen1,Song Jianping23,Yuan Yifan23,Chu Ying-Hua4,Hsu Yi-Cheng4,Huang Qiu5

Affiliation:

1. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China

2. Department of Neurosurgery, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China

3. Department of Neurosurgery, National Regional Medical Center, Huashan Hospital Fujian Campus, Fudan University, Fuzhou, Fujian, China

4. Siemens Healthineers Ltd., Shanghai, China

5. Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

BACKGROUND: Accurate volumetric segmentation of primary central nervous system lymphoma (PCNSL) is essential for assessing and monitoring the tumor before radiotherapy and the treatment planning. The tedious manual segmentation leads to interindividual and intraindividual differences, while existing automatic segmentation methods cause under-segmentation of PCNSL due to the complex and multifaceted nature of the tumor. OBJECTIVE: To address the challenges of small size, diffused distribution, poor inter-layer continuity on the same axis, and tendency for over-segmentation in brain MRI PCNSL segmentation, we propose an improved attention module based on nnUNet for automated segmentation. METHODS: We collected 114 T1 MRI images of patients in the Huashan Hospital, Shanghai. Then randomly split the total of 114 cases into 5 distinct training and test sets for a 5-fold cross-validation. To efficiently and accurately delineate the PCNSL, we proposed an improved attention module based on nnU-Net with 3D convolutions, batch normalization, and residual attention (res-attention) to learn the tumor region information. Additionally, multi-scale dilated convolution kernels with different dilation rates were integrated to broaden the receptive field. We further used attentional feature fusion with 3D convolutions (AFF3D) to fuse the feature maps generated by multi-scale dilated convolution kernels to reduce under-segmentation. RESULTS: Compared to existing methods, our attention module improves the ability to distinguish diffuse and edge enhanced types of tumors; and the broadened receptive field captures tumor features of various scales and shapes more effectively, achieving a 0.9349 Dice Similarity Coefficient (DSC). CONCLUSIONS: Quantitative results demonstrate the effectiveness of the proposed method in segmenting the PCNSL. To our knowledge, this is the first study to introduce attention modules into deep learning for segmenting PCNSL based on brain magnetic resonance imaging (MRI), promoting the localization of PCNSL before radiotherapy.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3