A fusion of deep neural networks and game theory for retinal disease diagnosis with OCT images

Author:

Vishnu Priyan S.1,Vinod Kumar R.2,Moorthy C.3,Nishok V.S.4

Affiliation:

1. Department of Biomedical Engineering, Kings Engineering College, Chennai, India

2. Department of Electronics and Communication Engineering, Saveetha Engineering College, Chennai, India

3. Dr. Mahalingam College of Engineering and Technology, Pollachi, India

4. Department of Electronics and Communication Engineering, Akshaya College of Engineering and Technology, Coimbatore, India

Abstract

Retinal disorders pose a serious threat to world healthcare because they frequently result in visual loss or impairment. For retinal disorders to be diagnosed precisely, treated individually, and detected early, deep learning is a necessary subset of artificial intelligence. This paper provides a complete approach to improve the accuracy and reliability of retinal disease identification using images from OCT (Retinal Optical Coherence Tomography). The Hybrid Model GIGT, which combines Generative Adversarial Networks (GANs), Inception, and Game Theory, is a novel method for diagnosing retinal diseases using OCT pictures. This technique, which is carried out in Python, includes preprocessing images, feature extraction, GAN classification, and a game-theoretic examination. Resizing, grayscale conversion, noise reduction using Gaussian filters, contrast enhancement using Contrast Limiting Adaptive Histogram Equalization (CLAHE), and edge recognition via the Canny technique are all part of the picture preparation step. These procedures set up the OCT pictures for efficient analysis. The Inception model is used for feature extraction, which enables the extraction of discriminative characteristics from the previously processed pictures. GANs are used for classification, which improves accuracy and resilience by adding a strategic and dynamic aspect to the diagnostic process. Additionally, a game-theoretic analysis is utilized to evaluate the security and dependability of the model in the face of hostile attacks. Strategic analysis and deep learning work together to provide a potent diagnostic tool. This suggested model’s remarkable 98.2% accuracy rate shows how this method has the potential to improve the detection of retinal diseases, improve patient outcomes, and address the worldwide issue of visual impairment.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3