Author:
Luo Jinkun,He Fazhi,Gao Xiaoxin
Abstract
Identifying photovoltaic (PV) parameters accurately and reliably can be conducive to the effective use of solar energy. The grey wolf optimizer (GWO) that was proposed recently is an effective nature-inspired method and has become an effective way to solve PV parameter identification. However, determining PV parameters is typically regarded as a multimodal optimization, which is a challenging optimization problem; thus, the original GWO still has the problem of insufficient accuracy and reliability when identifying PV parameters. In this study, an enhanced grey wolf optimizer with fusion strategies (EGWOFS) is proposed to overcome these shortcomings. First, a modified multiple learning backtracking search algorithm (MMLBSA) is designed to ameliorate the global exploration potential of the original GWO. Second, a dynamic spiral updating position strategy (DSUPS) is constructed to promote the performance of local exploitation. Finally, the proposed EGWOFS is verified by two groups of test data, which include three types of PV test models and experimental data extracted from the manufacturer’s data sheet. Experiments show that the overall performance of the proposed EGWOFS achieves competitive or better results in terms of accuracy and reliability for most test models.
Subject
Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science,Software
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献