Theoretical investigation of the adsorption behavior of dibenzothiophene molecule on the surface of the pristine boron nitride nanosheet

Author:

Khaleghian Mehrnoosh1,Sheikhi Masoome2,Shahab Siyamak345,Yahyaei Hooriye6,Ahmadianarog Mahin7

Affiliation:

1. Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

2. Independent Researchers, Gonbad-e-Kavoos, Iran

3. Belarusian State University, ISEI BSU, Minsk, Republic of Belarus

4. Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

5. Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

6. Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran

7. Department of Chemistry, Malekan Branch, Islamic Azad University, Malekan, Iran

Abstract

The adsorption of the dibenzothiophene (DBT) molecule upon the boron nitride nanosheet (BNNS) was discussed using the DFT method by M062X/6-311 + G* level of theory in the water solvent. The results of thermochemical parameters display the interaction of the DBT with BNNS is a spontaneous and exothermic process. The UV/Vis absorption analysis was carried out to predict the changes that occurred during the adsorption of the DBT upon the BNNS. Based on the FMO analysis, the value of the energy gap (Eg) of the BNNS reduced after the interaction of the DBT with the BNNS. The negative value of ΔN (-0.0048) of the DBT@BNNS complex confirms the charge transfer from DBT to the BNNS which is inconsistent with the results of the NBO analysis. QTAIM analysis displays an electrostatic interaction between BNNS and DBT. According to the results of NICS calculations, after the interaction of DBT with BNNS, all three rings A, B, and C of DBT have become more aromatic and stable in the presence of the nanosheet magnetic field. We hope that our findings can be used for modeling and designing a suitable adsorbed for the adsorptive desulfurization process.

Publisher

IOS Press

Subject

Materials Chemistry,Inorganic Chemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3