Learning argumentation frameworks from labelings

Author:

Bengel Lars1,Thimm Matthias1,Rienstra Tjitze2

Affiliation:

1. Artificial Intelligence Group, FernUniversität in Hagen, Germany

2. Department of Data Science and Knowledge Engineering, Maastricht University, The Netherlands

Abstract

We consider the problem of learning argumentation frameworks from a given set of labelings such that every input is a σ-labeling of these argumentation frameworks. Our new algorithm takes labelings and computes attack constraints for each argument that represent the restrictions on argumentation frameworks that are consistent with the input labelings. Having constraints on the level of arguments allows for a very effective parallelization of all computations. An important element of this approach is maintaining a representation of all argumentation frameworks that satisfy the input labelings instead of simply finding any suitable argumentation framework. This is especially important, for example, if we receive additional labelings at a later time and want to refine our result without having to start all over again. The developed algorithm is compared to previous works and an evaluation of its performance has been conducted.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Mathematics,Computer Science Applications,Linguistics and Language

Reference24 articles.

1. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI);Adadi;IEEE access,2018

2. G. Alfano, A. Cohen, S. Gottifredi, S. Greco, F. Parisi and G. Simari, Dynamics in abstract argumentation frameworks with recursive attack and support relations, in: Proceedings of the 24th European Conference on Artificial Intelligence (ECAI’20), 2020.

3. On the semantics of abstract argumentation frameworks: A logic programming approach;Alfano;Theory and Practice of Logic Programming,2020

4. Abstract argumentation frameworks and their semantics;Baroni;Handbook of formal argumentation,2018

5. P. Baroni and M. Giacomin, Solving semantic problems with odd-length cycles in argumentation, in: European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, Springer, 2003, pp. 440–451.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discovering Maximum Entropy Knowledge;Erkenntnis;2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3