Nonlowness is independent from fickleness

Author:

Ko Liling1

Affiliation:

1. Department of Mathematics, University of Notre Dame, IN, United States of America. lko@nd.edu

Abstract

It was recently shown that the computably enumerable (c.e.) degrees that embed the critical triple and the M 5 lattice structure are exactly those that are sufficiently fickle. Therefore the embeddability strength of a c.e. degree has much to do with the degree’s fickleness. Nonlowness is another common measure of degree strength, with nonlow degrees expected to compute more degrees than low ones. We ask if nonlowness and fickleness are independent measures of strength. Downey and Greenberg (A Hierarchy of Turing Degrees: A Transfinite Hierarchy of Lowness Notions in the Computably Enumerable Degrees, Unifying Classes, and Natural Definability (AMS-206) (2020) Princeton University Press) claimed this to be true without proof, so we present one here. We prove the claim by building low and nonlow c.e. sets with arbitrary fickle degrees. Our construction is uniform so the degrees built turn out to be uniformly fickle. We base our proof on our direct construction of a nonlow array computable set. Such sets were always known to exist, but also never constructed directly in any publication we know.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3